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SUMMARY

The mitochondrial genome relies heavily on post-
transcriptional events for its proper expression, and
misregulation of this process can cause mitochon-
drial genetic diseases in humans. Here, we report
that a novel translational variant of Fas-activated
serine/threonine kinase (FASTK) co-localizes with
mitochondrial RNA granules and is required for the
biogenesis of ND6 mRNA, a mitochondrial-encoded
subunit of the NADH dehydrogenase complex (com-
plex I). We show that ablating FASTK expression in
cultured cells and mice results specifically in loss of
ND6 mRNA and reduced complex I activity in vivo.
FASTK binds at multiple sites along the ND6 mRNA
and its precursors and cooperates with the mito-
chondrial degradosome to ensure regulated ND6
mRNA biogenesis. These data provide insights into
the mechanism and control of mitochondrial RNA
processing within mitochondrial RNA granules.
INTRODUCTION

Mitochondria play a central role in the production of ATP through

oxidative phosphorylation, a process that requires five large pro-

tein complexes (complex I–V) located at the inner mitochondrial

membrane. Close to 100 proteins participate in the respiratory

chain, and whereas most of these are encoded in the nucleus

and imported into mitochondria from the cytoplasm, 13 proteins

are encoded within the mitochondrial genome. In addition to the

protein components of the respiratory chain, the mitochondrial

genome also encodes two rRNAs and 22 tRNAs required for

translation of the mitochondrial-encoded proteins. Mutations

in many of the genes encoding these proteins have been as-

sociated with severe human pathologies for which no cure
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currently exists (Chinnery and Hudson, 2013). Mitochondrial

transcription is initiated from the ‘‘D-loop’’ region of the mito-

chondrial genome and gives rise to long polycistronic precursor

transcripts that span almost the entire mitochondrial genome

(reviewed in Hällberg and Larsson, 2014). After transcription,

the primary transcripts are processed to yield individual mature

RNAs, in most cases by removal of flanking tRNAs according to

the tRNA punctuation model (Ojala et al., 1981). However, this

model does not completely explain how every mRNA is excised

from the polycistronic transcript because atypical junctions exist

that lack flanking tRNAs. Four such atypical junctions are found

in the human mitochondrial genome: (1) at the 30 end of the

COX1mRNA; (2) between the ATP8/6 and COX3mRNAs; (3) be-

tween the ND5 and CYB mRNAs; and (4) at the 30 end of ND6

mRNA (for a map of the mitochondrial genome, see Figures

6C and S5A). The heavy-strand-encoded mitochondrial RNAs

exist predominantly as mono- or bicistronic RNAs, whereas

ND6 mRNA, the only mRNA encoded by the light strand, is pre-

sent at steady state in both the mature form of 1.0–1.1 kb and as

several higher-molecular-weight precursor RNAs called RNA1–3

(Ojala et al., 1981). The wide variation in steady-state levels of

the mature mitochondrial RNAs that originate from both the

heavy- and light-strand polycistronic precursors underlines the

importance of post-transcriptional regulatory mechanisms in

controlling the stability and metabolism of the individual mito-

chondrial transcripts (Temperley et al., 2010; Rackham et al.,

2012).

We and others have recently observed the presence of RNA

granules within mitochondria (Antonicka et al., 2013; Borowski

et al., 2013; Jourdain et al., 2013). These mitochondrial RNA

granules have been shown to be associated with proteins that

are functionally linked to the post-transcriptional regulation of

mitochondrial RNAs, such as RNase P, RNase Z, and GRSF1

involved in RNA processing (Antonicka et al., 2013; Jourdain

et al., 2013; Bogenhagen et al., 2014); the mitochondrial polynu-

cleotide phosphorylase (PNPase)-hSuv3p helicase complex, or

mitochondrial degradosome known to degrade the so-called
ors
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‘‘mirror’’ RNAs complementary to the mitochondrial genes

(Szczesny et al., 2010; Borowski et al., 2013); the mitochondrial

poly(A) polymerase (Wilson et al., 2014); and RNA methyltrans-

ferases (Vilardo et al., 2012; Jourdain et al., 2013; Lee et al.,

2013). The presence of these enzymes in RNA granules therefore

suggests a role for this novel mitochondrial compartment in

post-transcriptional regulation of mitochondrial RNA expression

and turnover.

In an effort to identify new mitochondrial RNA granule compo-

nents, the protein FASTK (Fas-activated serine/threonine kinase)

caught our attention because (1) it is likely to be mitochondrial

(Pagliarini et al., 2008), (2) it binds RNA (Castello et al., 2012),

and (3) it is known to be a component of cytosolic RNA granules

(Kedersha et al., 2005). FASTK had initially been described as a

kinase activated by Fas signaling (Tian et al., 1995), but the argu-

ments in favor of this activity have been recently questioned and

this protein should no longer be considered as a kinase (Simarro

et al., 2007). We now know that FASTK regulates alternative

splicing in the nucleus and co-localizes with stress granules

and processing bodies (P-bodies), two types of cytosolic RNA

granules (Kedersha et al., 2005; Simarro et al., 2007). FASTK

knockout (FASTK�/�) mice have been generated, and analysis

of their immune system revealed that FASTK promotes neutro-

phil recruitment and inflammation (Simarro et al., 2010a). Which

of the putative functions and sites of action of FASTK accounts

for the phenotype of FASTK�/� mice is currently unknown.

In humans, FASTK is the founding member of a family of pro-

teins, which, in addition to FASTK itself, contains five additional

members called FASTKD1–FASTKD5 (Figure S1A). All FASTKDs

are characterized by an N-terminal mitochondrial-targeting sig-

nal (Simarro et al., 2010b) and the presence of three conserved

but largely uncharacterized domains called FAST_1, FAST_2,

and RAP (Figure S1A). According to homology predictions, the

�60-amino-acid RAP domain is likely to bind RNA (Lee and

Hong, 2004), and indeed, all members of the FASTK family

have recently been found in screens for RNA-binding proteins

(Baltz et al., 2012; Castello et al., 2012; Wolf and Mootha,

2014). The function of the FASTK family members in mitochon-

dria has not been studied in detail, although pioneering work

from Simarro et al. (2010b) has shown that FASTKD3 is required

for mitochondrial oxygen consumption. Interestingly, FASTKD2

has been found to bemutated in two siblings from a consanguin-

eous Bedouin family, leading to infantile mitochondrial encepha-

lomyopathy (Ghezzi et al., 2008). The precise mechanism under-

lying the pathology associated with the FASTKD2 mutation

remains to be established.

Here, we investigate the mitochondrial localization and mech-

anism of action of FASTK. We report that, in addition to its

previously reported dual cytosolic and nuclear localization,

FASTK is also able to enter themitochondria by virtue of a cryptic

mitochondrial-targeting sequence that initiates at an alternative

internal methionine. We show that FASTK is concentrated in

mitochondrial RNA granules and that it functions to regulate spe-

cifically expression of the ND6 mRNA, the only protein-coding

sequence located on the light-strand transcript. We show that

FASTK binds the light-strand precursor RNA at multiple sites

both within and downstream of the ND6-coding sequence and

that, together with the mitochondrial degradosome, it par-
Cell R
ticipates in generating the mature form of the ND6 mRNA. In

the absence of mitochondrial FASTK, the ND6 mRNA is unde-

tectable, resulting in decreased complex I activity in FASTK-

depleted cells and mice.

RESULTS

A Cryptic Mitochondrial-Targeting Signal in FASTK
The subcellular localization of FASTK in 143B cells and mouse

embryonic fibroblasts (MEFs) was investigated by immunoblot

analysis. Two bands of�60 kDa and�50 kDa could be detected

(Figures 1A and 1B), and both bands were absent in extracts

from 143B cells expressing an shRNA against FASTK or in

FASTK�/� MEFs (Figures 1A and 1B). Subcellular fractionation

experiments indicated that the long form of FASTKwas enriched

in the cytosolic and nuclear fractions, whereas the short form

was enriched in mitochondria (Figure 1C). FASTK apparently

migrated more slowly in the nucleus, which could correlate

with phosphorylation of the protein (Tian et al., 1995), though

this was not investigated further in this study. In mitochondria,

FASTK was localized to the matrix as determined by the protein-

ase K accessibility test and is most likely attached to the inner

membrane because it remained associated with the membrane

fraction after alkali treatment (Figures 1D and 1E). Immunocyto-

logical staining of C-terminal HA-tagged FASTK (FASTK-HA)

using an antibody directed against the HA tag confirmed the

tripartite localization of FASTK in the nucleus, cytosol, and mito-

chondria and revealed the presence of foci in the organelle

(Figures 1F and 1G, left panel) reminiscent of the mitochondrial

RNA granules described previously (Jourdain et al., 2013).

Importantly, the two-band pattern of FASTK seen by western

blotting was also observed when FASTK-HA was expressed

exogenously (Figure 1F), indicating that a single FASTK mRNA

encodes two protein isoforms with different subcellular localiza-

tions (Figure 1H).

Several post-transcriptional mechanisms are able to generate

alternative protein isoforms from a single mRNA transcript. In the

case of FASTK, we were intrigued by the conserved in-frame

ATG at position 103 coding for methionine 35 (M35) (Figures

1H and S2A), because alternative translation initiation sites

have previously been shown to target proteins to different

cellular compartments, including mitochondria (Kazak et al.,

2013). To investigate the presence of an alternative start site in

FASTK, we mutated the second ATG (FASTK-HA M35G) and

observed that this mutation completely abolished the mitochon-

drial localization of the protein without affecting its cytosolic or

nuclear localization (Figure 1G, center panel). Furthermore,

immunoblot analysis revealed only the long form of FASTK,

whereas the short form was completely absent (Figure 1F). To

confirm these data directly, we constructed the N-terminally

truncated isoform of FASTK, which initiates at M35 (FASTK-HA

D1–34). After transfection into 143B cells, we found that

FASTK-HAD1–34was localized exclusively inmitochondria (Fig-

ure 1G, right panel). Immunoblot analysis of these cells showed

that the protein co-migrated with the short form of endogenous

FASTK (Figure 1F). These findings suggested that a cryptic mito-

chondrial-targeting sequence (MTS) may lie downstream of

M35. To test this, we fused the first 25 residues following M35
eports 10, 1110–1121, February 24, 2015 ª2015 The Authors 1111



Figure 1. FASTK Is a Mitochondrial Protein

(A) Immunoblot analysis of 143B cells stably expressing an shRNA directed against FASTK. Membranes were probed with anti-FASTK and reprobed with

anti-PHB to verify equal sample loading.

(B) Immunoblot analysis of FASTK+/+ (WT) and FASTK�/� (KO) MEFs. Membranes were probed as in (A).

(legend continued on next page)
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Figure 2. FASTK Co-localizes with Mitochondrial RNA Granules

(A) Confocal microscopy analysis of 143B cells stably expressing mitoFASTK-HA and mitoBFP, a mitochondrial-targeted version of the blue fluorescent protein.

Cells were incubated with 5 mM BrU for 1 hr before immunolabelling with anti-HA and anti-BrU/BrdU antibodies. Arrowhead, mitochondrial RNA granule.

(B) Confocal microscopy of 143B cells stably expressing mitoFASTK-HA and mitoBFP. Cells were immunolabelled with anti-HA and anti-GRSF1 antibodies.

Arrowhead, mitochondrial RNA granule.

(C) Confocal microscopy analysis of 143B cells stably expressing FASTKD2-HA and mitoBFP. Cells were incubated with 5 mM BrU for 1 hr before im-

munolabelling with anti-HA and anti-BrU/BrdU antibodies. Arrowhead, mitochondrial RNA granule.
to GFP (FASTK 35-60-GFP) and observed that this sequence

was sufficient to target GFP to mitochondria (Figure S2B). Addi-

tional confirmation was obtained by mitochondrial import

studies in which we showed that in-vitro-translated FASTK-HA

D1–34, but not FASTK-HA M35G, could be imported into iso-

lated 143B mitochondria in a membrane-potential-dependent

manner (Figure S2C). Taken together, these data demonstrate

that FASTK can be translated from either the first initiation codon

(Figure 1H) to provide the cytosolic and nuclear forms of the pro-

tein (cytoFASTK) or from M35 to generate a shorter form that is

targeted to mitochondria (mitoFASTK).

FASTK Co-localizes with Mitochondrial RNA Granules
As mentioned above, the analysis of FASTK-HA by immunoflu-

orescence using an antibody to the HA tag revealed the pres-
(C) Subcellular fractionation of 143B cells and analysis by western blotting show

branes were probed with antibodies directed against FASTK, and the purity of the

marker P54, and a mitochondrial marker mtSSB. Additional isoforms and modifi

(D) Immunoblot analysis of total isolated 143Bmitochondria (T), or supernatant (S)

Immunoblots were probed with antibodies against FASTK, PHB (a membrane m

(E) Immunoblot analysis of isolated 143B mitochondria after the proteinase K ac

membrane, or lysed in Triton X-100 prior to treatment with proteinase K. Immu

protein), anti-Tom20 (a mitochondrial outer membrane protein), and anti-mtSSB

(F) Immunoblot analysis of 143B cells stably expressing FASTK-HA, FASTK-HAM

with anti-HA antibody and then reprobed with anti-actin as a loading control

(G) Confocal microscopy of cells described in (F). Arrowheads indicate mitochon

(H) The FASTK gene showing the exon structure (1–10) and two ATG start site

methionine 35 (M35). FASTK protein can be translated from either site, but themito

at ATG 103. FAST_1, FAST_2, and RAP are the conserved domains of FASTK.

Cell R
ence of mitochondrial-RNA-granule-like structures in the mito-

chondria of transfected cells (Figure 1G, left panel), and this

granular distribution was also seen in cells expressing mito-

FASTK-HA (Figure 1G, right panel). In previous studies, we

and others have shown that mitochondrial RNA granules accu-

mulate newly synthesized RNA and can be observed by BrU

labeling (Iborra et al., 2004; Jourdain et al., 2013), and we

thus assessed whether mitoFASTK-HA co-localized with

BrU-labeled granules in 143B cells. In cells stably expressing

mitoFASTK-HA, we found that 92% (n = 100) of foci contain-

ing FASTK were positive for BrU (Figure 2A) and that mito-

FASTK also co-localized with GRSF1, a component of the

mitochondrial RNA granules described previously (Figure 2B).

However, BrU incorporation and mitochondrial RNA granule

formation occurred normally in FASTK-depleted cells
s a lower-molecular-weight isoform of FASTK present in mitochondria. Mem-

subcellular fractions was assessed using a cytosolic marker HSP90b, a nuclear

cation of FASTK in the nucleus or the cytosol were not investigated here.

and pellet (P) fractions after Na2CO3 (pH 11) extraction and ultra-centrifugation.

arker), or cytochrome c (Cyt c, a soluble marker).

cessibility test. Mitochondria were left untreated, swollen to rupture the outer

noblots were probed with anti-FASTK, anti-OPA1 (an inter-membrane space

(a matrix protein).

35G (cytoFASTK), or FASTK-HAD1–34 (mitoFASTK). Membranes were probed

drial RNA granules.

s at position 1, coding for methionine 1 (M1) and at position 103, coding for

chondrial targeting signal (M) of FASTK is exposed only when translation starts

eports 10, 1110–1121, February 24, 2015 ª2015 The Authors 1113



Figure 3. FASTK Is Required for NADH

Complex Activity

(A) Analysis of mitochondrial enzymatic activity on

quadriceps from FASTK+/+ (WT) and FASTK�/�

(KO) mice. Enzymatic activities were normalized

to the citrate synthase activity. Data from three

different mice are represented as mean ± SEM.

*p < 0.05 using a Mann-Whitney test; n = 3.

(B) A similar analysis to that shown in (A) was

performed on mouse hearts.

(C) Schematic representation of the mitochondrial

electron transport chain: I, NADH dehydrogenase

complex; II, succinate dehydrogenase com-

plex; III, cytochrome bc1 complex; IV, cytochrome

c oxidase complex. Q, ubiquinone/ubiquinol; C,

cytochrome c.

(D) Immunoblot analysis of FASTK+/+ (WT) and

FASTK�/� (KO) hearts with the indicated anti-

bodies.
(Figure S3A), suggesting that FASTK is not an essential struc-

tural component of the mitochondrial RNA granules. Of the

other members of the FASTK family, only FASTKD2 co-local-

ized with BrU foci (Figure 2B) whereas no co-localization

with RNA granules was observed for FASTKD1, FASTKD3,

FASTKD4 (TBRG4), or FASTKD5 (Figure S3B). Together, these

data indicate that the mitochondrial isoform of FASTK is a

component of mitochondrial RNA granules and that it is not

required for maintaining their structural integrity. The role of

FASTKD2 in mitochondrial RNA granules will be reported

elsewhere.

FASTK Is Required for Mitochondrial NADH
Dehydrogenase Activity
To test whether FASTK plays a role in mitochondrial function, we

took advantage of existing mice with a disrupted FASTK gene

(Simarro et al., 2010a). We first tested the enzymatic activity of

the respiratory chain complexes from the skeletal and cardiac

muscles of FASTK+/+ and FASTK�/� animals and observed an

�60% decrease in mitochondrial NADH dehydrogenase (com-

plex I) activity in both tissues, whereas the activity of other com-

plexes was not significantly altered or was even slightly

increased (Figures 3A–3C). The specific complex I deficiency
1114 Cell Reports 10, 1110–1121, February 24, 2015 ª2015 The Authors
was confirmed by oxygraphy using two

independent FASTK+/+ and two indepen-

dent FASTK�/� MEF lines (Figure S4).

Protein immunoblot analysis showed

that the steady-state levels of several

subunits of complex I, including

NDUFB8, NDUFS1, and NDUFS2, were

decreased in the heart of FASTK�/� ani-

mals, suggesting a partial disassembly

of the complex as previously described

(Heide et al., 2012; Karamanlidis et al.,

2013), whereas subunits of the other

complexes were normally expressed

(Figure 3D). Thus, these results indicate

that FASTK is specifically required for
mitochondrial NADH dehydrogenase activity both in vitro and

in vivo.

FASTK Specifically Regulates ND6 mRNA Levels
Because FASTK is thought to bind RNA and is localized in the

mitochondrial RNA granules as shown above, we reasoned that

it may play a role in the post-transcriptional regulation of

mtDNA-encoded subunit(s) of the respiratory complex I. We

therefore performed a northern blot analysis to compare the

expression of these mRNAs in wild-type and FASTK�/� cells.

MEFs isolated from FASTK�/� animals showed a dramatic

reduction in the level of ND6 mRNA (MTND6), which encodes

subunit 6 of the NADH dehydrogenase complex, whereas all

other subunits of complex I were normally expressed (Fig-

ure 4A). Importantly, reintroduction of human mitoFASTK, but

not cytoFASTK, into FASTK�/� MEFs restored MTND6 levels,

indicating that the regulation of MTND6 is under the control

of the mitochondrial form of FASTK (Figure 4B). We confirmed

the depletion of MTND6 in the brain, heart, muscle, and liver

from FASTK�/� mice (Figure 4C). Similar results were obtained

using 143B cells in which FASTK was depleted by RNAi (Fig-

ure 4D). The level of all other mtDNA-encoded RNAs, including

the other 12 ORFs, was within the control range or slightly



Figure 4. FASTK Regulates ND6 mRNA Expression in Mitochondria

(A) Northern blot analysis of total RNA from FASTK+/+ (WT) and FASTK�/� (KO) MEFs using riboprobes against all mitochondrial-encoded subunits of complex I.

(B) Northern blot and immunoblot analysis of FASTK+/+ (WT) and FASTK�/� (KO) MEFs, in which GFP, FASTK-HA, mitoFASTK-HA (D1–34), or cytoFASTK-HA

(M35G) have been stably introduced.

(C) Northern blot analysis of total RNA from four different organs of FASTK+/+ (WT) and FASTK�/� (KO) mice probed for the sequences indicated.

(D) Northern blot analysis of total RNA from 143B cells stably expressing an shRNA against FASTK, or the empty vector (pLKO), probed for the sequences

indicated.

(E) Northern blot analysis of total RNA from 143B cells stably expressing GFP or FASTK-HA using riboprobes directed against MTND6 or MTCO1.
higher in FASTK-depleted cells and animals (Figures 4A, 4C,

and 4D). Strikingly, overexpression of human FASTK-HA in

143B cells led to the strong stabilization of ND6 mRNA, indi-

cating that FASTK is a limiting factor in the regulation of

MTND6 expression (Figure 4E). Taken together, our results indi-

cate that FASTK specifically controls the expression of ND6

mRNA in both cultured cells and mice.

The RAP Domain of FASTK Plays a Central Role in the
Regulation of ND6 mRNA
Among the conserved domains of the FASTK family, the RAP

domain has been predicted to bind RNA (Lee and Hong, 2004;

Figure 5A). This may explain the presence of the FASTK family

members in recent studies that identified mRNA-interacting pro-

teins (Baltz et al., 2012; Castello et al., 2012). Our data thus far

have demonstrated that FASTK regulates MTND6; therefore,

we investigated whether the two molecules could interact and

whether such an interaction may involve the RAP domain. For

this, we first generated 143B cells that stably expressed mito-

FASTK-HA and used these cells to perform immunoprecipitation

experiments using an antibody directed against the HA tag.

The immunoprecipitated RNAs were analyzed by dot-blotting

(RNA-IP) using riboprobes specific for MTND6 and several

other mitochondrial-encoded RNAs. As shown in Figure 5C (left

panel), we found that MTND6 was specifically enriched in the

mitoFASTK-HA immunoprecipitate, whereas none of the other

mitochondrial RNAs were detected. To test the role of the RAP

domain in mediating the interaction between FASTK and

MTND6, we generated a second line of 143B cells that stably
Cell R
expressed a mitoFASTK mutant lacking the RAP domain (mito-

FASTKDRAP-HA). mitoFASTKDRAP-HA expression did not pre-

vent the incorporation of BrU into newly synthesized RNA (Fig-

ure S3A). RNA-IP using these cells revealed that the interaction

of MTND6 with mutant FASTK was greatly reduced compared

to wild-type mitoFASTK (Figure 5C, right panel), even though

both versions of mitoFASTK were efficiently and selectively

precipitated by the anti-HA antibodies (Figure 5B). When in-

troduced into FASTK�/� MEFs or into 143B cells depleted of

FASTK, mitoFASTKDRAP-HA could enter mitochondria (Fig-

ure 5E) but did not localize to mitochondrial RNA granules and

was not able to restore MTND6 expression (Figure 5D). Thus,

we conclude that FASTK interacts with MTND6 and that the

RAP domain is essential for this interaction. Deletion of the RAP

domain results in loss of the ND6-processing function of FASTK

and loss of its association with mitochondrial RNA granules.

The Mature ND6 mRNA Contains a 30 UTR
MTND6 is the only mRNA encoded by the light strand. The 50 end
of the protein-coding sequence is flanked by tRNAGlu (Fig-

ure S5A). However, there is no flanking downstream tRNA, and

the processing of its 30 end is thus an exception to the tRNApunc-

tuation model (Ojala et al., 1980). Instead, ND6mRNA is adjacent

to a long stretch of non-coding RNA that is complementary to

ND5 and is sometimes referred to as ‘‘mirror’’ ND5 (Figure S5A).

Indeed, there is no clear agreement regarding the length of

MTND6 30 UTR: whereas the original publication describing this

mRNA reported a coding sequence of 525 nucleotides followed

by a 30 UTR of 500–600 nucleotides (Ojala et al., 1980; Tullo
eports 10, 1110–1121, February 24, 2015 ª2015 The Authors 1115



Figure 5. The RAP Domain of FASTK Is Required for Binding to ND6 mRNA and for FASTK Localization and Function
(A) Structural prediction of the RAP domain from FASTK according to I-TASSER. Details are given in Figure S1.

(B) Immunoblot analysis after immunoprecipitation with rabbit polyclonal antibodies directed against HA or FLAG (ctrl). Mitochondrial lysates for immunopre-

cipitationwere prepared from 143B cells expressing GFP,mitoFASTK-HA, or mitoFASTK-DRAP-HA. PHBwas used as a negative control. * indicates the IgG light

chain.

(C) RNA dot blot and quantification after immunoprecipitation as described in (B). Exposures shown here are made so that the ‘‘input’’ signal is comparable

between the different probes. Data are represented as mean ± SEM. n = 3.

(D) Northern blot analysis of FASTK+/+ (WT) and FASTK�/� (KO) MEFs in which GFP, FASTK-HA, mitoFASTK-HA, or mitoFASTK-DRAP-HA have been stably

introduced.

(E) Confocal microscopy of 143B cells stably expressing mitoFASTK-DRAP-HA immunostained with antibodies directed against HA or Tom20, a mitochondrial

marker.
et al., 1994; Slomovic et al., 2005; Ruzzenente et al., 2012), others

have reported that the 30 UTR of ND6 is only 33 to 34 nucleotides

(Mercer et al., 2011). We therefore decided to reassess this ques-

tion. Northern blots from wild-type and r0 cells were probed with

riboprobes directed against the coding sequence of ND6 (ribop-

robe: CDS) or against its putative long 30 UTR (riboprobe: UTR).

Both probes revealed the same major transcript of 1.0–1.1 kb

consistent with the original report, whereas several higher-molec-

ular-weight transcripts could also be discerned that were absent

in RNA from r0 cells (Figure S5B, black arrows).

FASTK Binds at Multiple Sites within the ND6
mRNA Precursor
Because FASTK is enriched in mitochondrial RNA granules, the

sites at which the newly synthesized RNAs are concentrated, we

wished to know whether FASTK could interact directly with the

ND6 mRNA and/or its precursors during MTND6 biogenesis.

First, to determine whether loss of FASTK affects the expression

of light-strand-encoded genes other than ND6, we performed
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northern blotting using probes against tRNAPro, tRNAGlu, mirror

ND4/4L, or mirror COI (Figures 4D and S5C). No difference

was seen in the level of any of these transcripts in cells depleted

for FASTK, indicating that FASTK does not play a general role in

light-strand RNA metabolism. It is particularly noteworthy that

the level of tRNAGlu immediately upstream of ND6 is unaffected

(Figures 4D and S5D), which implies that FASTK does not partic-

ipate in 50 end processing of MTND6. To study processing of

the 30 end of MTND6, northern blots were exposed to a probe

directed against the non-coding RNA region corresponding to

mirror ND5 (Figures S5A and S5B). This probe revealed several

higher-molecular-weight species present at low levels and

possibly related to the higher-molecular-weight RNAs revealed

by the two ND6-specific probes (Figure S5B, arrows). These

RNAs likely represent the ND6 precursors described in the orig-

inal study and referred to as RNAs 1–3 (Ojala et al., 1980; Fig-

ure 6C, bottom). This therefore prompted us to test whether

FASTK could bind any of the ND6 precursors. To answer this

question, we repeated the RNA-IP as described in Figure 5
ors



Figure 6. FASTK Binds the Precursors of ND6 mRNA
(A) RNA dot blot after immunoprecipitation using probes directed againstMTND6, mirror ND5, or MTCO1. The RNA-IP was performed in RNase-free conditions.

Exposures shown here are made so that the ‘‘input’’ signal is comparable between the different probes.

(B) Phosphorimager quantification of the data shown in (A). Data are represented as mean ± SEM. n = 3.

(C) IGV view of the RNA fragments bound to FASTK and aligned to the mitochondrial genome. The RNA-IP was partially digested with RNase I and sequenced

using next-generation RNA sequencing. Essentially no enrichment for heavy-strand transcripts was observed (rRNAs are considered as contaminants and are

enriched to the same extent in both IPs). In contrast, a strong enrichment of light-strand-encoded RNAswas observed specifically in the region encoding the ND6

transcripts. These results confirm the dot blotting shown in (A). Black arrowheads indicate sites of increased protection at the 30 ends of the ND6 mRNA and

precursor RNAs 1, 2, and 3 in the regions immediately preceding the 30 processing site. White arrowheads indicate the 30 processing sites for ND6 mRNA and

RNAs 1, 2, and 3, all of which are devoid of FASTK-mediated protection. Bottom: schematic representation of the mature ND6 mRNA and precursor RNAs 1–3.

Rectangles represent the ND6 coding sequence; lines represent non-coding sequences.

(D) Detailed view of the region corresponding to ND6 mRNA in (C). CDS: coding sequence. UTR: untranslated region.
and probed the dot blots with the downstreammirror ND5 ribop-

robe. A significant increase in the signal was found in the mito-

FASTK-HA immunoprecipitate, indicating that FASTK binds to,

and is able to immunoprecipitate, the precursors of ND6

mRNA (Figures 6A and 6B). In order to refine our analysis of

the region bound by FASTK within the precursor RNA, we

repeated the RNA-IP and then performed a partial digestion

with RNase I and analyzed the protected RNA fragments using

next-generation RNA sequencing. Alignment of the sequences

obtained to the mitochondrial genome is shown in Figure 6C.

Apart from the presence of highly abundant rRNAs that are

also seen in the negative control, the results show that most of

the protected RNA fragments are transcribed from the DNA light

strand. No enrichment for heavy-strand RNAs was observed

(Figure 6C). The protected sequences covered the coding

sequence of ND6 mRNA, its 30 UTR, and to a lesser extent the

downstream sequences (Figures 6C and 6D).
Cell R
FASTK Modulates Degradosome Activity to Generate
the Mature ND6 mRNA
We next wished to investigate the RNase activity responsible

for depletion of MTND6 in the absence of FASTK. Light-strand

non-coding RNAs, or ‘‘mirror’’ RNAs, are normally eliminated

by the mitochondrial degradosome, which is composed of

the helicase hSuv3p, and the polynucleotide phosphorylase

PNPase, a 30-50 exoribonuclease (Borowski et al., 2013). Inter-

estingly, both the PNPase and hSuv3p are found in mitochon-

drial RNA granules (Borowski et al., 2013). Because MTND6 is

encoded on the light strand, we reasoned that this mRNA

could also be a substrate for the degradosome, and we there-

fore wished to investigate whether, in the absence of FASTK,

the degradosome could be responsible for the complete elim-

ination of MTND6. As previously reported, we found that

downregulation of either the PNPase or hSuv3p led to the

accumulation of mirror COI and mirror ND4/4L, whereas the
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Figure 7. FASTK Modulates Degradosome

Activity to Generate the Mature ND6 mRNA

(A) Immunoblot analysis of 143B cells stably ex-

pressing an shRNA against either PNPase or

hSuv3p and probed with antibodies directed

against PNPase, hSuv3p, or GAPDH. pLKO cor-

responds to the empty vector.

(B) Immunoblot analysis of 143B cells stably ex-

pressing an shRNA against FASTK probed with

antibodies directed against the PNPase, hSuv3p,

or GAPDH. pLKO corresponds to the empty

vector.

(C) Northern blot analysis of cells stably express-

ing shRNAs against FASTK and/or the PNPase.

Parallel blots were probed to reveal MTND6 or

MTCO1. White arrowhead, matureMTND6. Black

arrowheads, MTND6-containing RNAs. pLKO

corresponds to the empty vector.

(D) Northern blot analysis of cells stably express-

ing shRNAs against FASTK and/or hSuv3p. Par-

allel blots were probed to reveal MTND6 and

MTCO1. White arrowhead, matureMTND6. Black

arrowheads, MTND6-containing RNAs. pLKO

corresponds to the empty vector.

(E) Proposed mechanism in which FASTK binds

the precursor forms of ND6 mRNA at multiple

sites, including the 30 UTR, and prevents its

degradation during processing of the light

strand by the mitochondrial degradosome. In the

absence of FASTK, uncontrolled activity of the

degradosome leads to complete elimination of

the entire ND6 mRNA (see Discussion for more

details). CDS: coding sequence. UTR: untrans-

lated region. ncNA: non-coding RNA.
heavy-strand transcripts, MTCOI and 12S, were not at all or

only mildly affected (Figures 7C, 7D, and S5C). Interestingly,

depletion of either component of the degradosome also led

to the strong accumulation of ND6-containing transcripts (Fig-

ures 7C and 7D lines 1 and 2, black arrowheads), suggesting

that the degradosome is also involved in the generation of

MTND6. To find out whether activity of the degradosome could

be responsible for the loss of MTND6 in the absence of FASTK,

we depleted both FASTK and the PNPase or hSuv3p. As ex-

pected, MTND6 was not detected in cells depleted for FASTK

alone. However, when the degradosome activity was also
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impaired, we found a considerable in-

crease in ND6-containing transcripts of

various sizes, although significantly no

accumulation of mature MTND6, indi-

cating that the degradosome is respon-

sible for MTND6 degradation in the

absence of FASTK. In control experi-

ments, we showed that the abundance

of the degradosome subunits was not

affected by the depletion of FASTK

(Figure 7B). Based on these data, we

conclude that the degradosome partici-

pates in the processing of the light-

strand-encoded RNAs and is largely
responsible for the depletion of MTND6 in the absence of

FASTK.

DISCUSSION

In this report, we have studied the RNA-binding protein

FASTK, a protein previously found to be associated with

RNA granules in the nucleus and cytoplasm. Here, we report

the existence of a translational variant of FASTK that is tar-

geted to mitochondria, where it co-localizes with the mito-

chondrial RNA granules. We provide evidence that the



mitochondrial form of FASTK binds ND6 mRNA and its pre-

cursors and that it cooperates with the mitochondrial degra-

dosome to regulate ND6 mRNA biogenesis. Accordingly, we

found that depletion of FASTK results in the loss of mature

ND6 mRNA, leading to reduced complex I activity in both

cultured cells and mice.

Regulation of ND6 mRNA Biogenesis by the
Mitochondrial Isoform of FASTK
FASTK was previously reported to localize to speckles in the nu-

cleus and to P-bodies and stress granules in the cytoplasm (Ke-

dersha et al., 2005; Simarro et al., 2007). We have now identified

a second translation initiation site in the FASTK mRNA immedi-

ately upstream of a cryptic MTS. Use of this alternative start

site generates a shorter protein that is localized to mitochondria,

where it concentrates in the mitochondrial RNA granules. The

existence of a cryptic MTS is not exclusive to FASTK, and similar

sequences have recently been described for several other pro-

teins (Kazak et al., 2013), suggesting that internal initiation of

translation upstream of a specific targeting sequence may pro-

vide a general mechanism by which a single mRNA is able to

generate different isoforms destined for localization to distinct

subcellular compartments.

We report that the mitochondrial form of FASTK is involved

specifically in the regulation of ND6 mRNA. Interestingly,

whereas depletion of FASTK resulted in loss ofMTND6, overex-

pression of the protein led to significant increase in this mRNA

compared to control cells (Figure 4E), suggesting that binding

to FASTK is a rate-limiting step in the control of ND6 mRNA

levels. MTND6 is unique in being the only protein-coding tran-

script encoded on the light strand of the mitochondrial genome.

It is also an exception to the tRNA punctuation model, because

there is no tRNA adjacent to the 30 end of the coding sequence,

and indeed MTND6 is one of the rare mitochondrial RNAs that

has an extended 30 UTR and that, at steady state, also exists

in the form of several higher-molecular-weight precursors previ-

ously referred to as RNAs 1–3 (Ojala et al., 1981). Our analysis of

the RNA sequences bound to FASTK following partial RNase

digestion showed that FASTK binds specifically light-strand-en-

coded RNAs and protects in particular the ND6 mRNA-coding

sequence and its 30 UTR (Figure 6D). Very little is known about

the processing of the light-strand precursor RNA, which also

contains the non-coding so-called ‘‘mirror’’ sequences. In previ-

ous work, it was reported that the mirror RNAs are degraded by

the degradosome and that they accumulate when either the

PNPase or the helicase hSuv3p components of the degrado-

some are depleted (Szczesny et al., 2010; Borowski et al.,

2013). We have confirmed these results and have extended

our analysis of degradosome activity to include its role in expres-

sion ofMTND6.We observed thatMTND6-containing transcripts

also accumulate in the absence of PNPase or hSuv3p (Figures

7C and 7D), indicating that, like the mirror RNAs, MTND6 levels

are regulated by the degradosome. Mitochondrial mRNAs en-

coded on the heavy strand, however, such as MTCOI, were

insensitive to depletion of the degradosome (Figure S5C). Strik-

ingly, in cells depleted for FASTK, we could restore expression

of MTND6-containing transcripts by depletion of PNPase or

hSuv3p (Figures 7C and 7D, lanes 3 and 4). However, in this
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case, we observed no enrichment for the 1.0–1.1 kb transcript

corresponding to the mature ND6 mRNA. This result suggests

first that FASTK protects MTND6 from the degradosome and

second that it is involved in defining the length of the mature

mRNA. Taken together with the observations that (1) only

the 50 end of the ND6 mRNA is defined by tRNA excision; (2)

FASTK binds at multiple sites along MTND6, and (3) the region

downstream of ND6 encodes ‘‘mirror’’ RNAs that are normally

eliminated by the degradosome, we have proposed a model

shown in Figure 7E, in which binding to FASTK defines the length

and the abundance of MTND6 by regulating the processing ac-

tivity of the degradosome. Thus, in the absence of FASTK, the

unbound ND6 mRNA is completely eliminated by the degrado-

some, whereas in the absence of both FASTK and an active de-

gradosome, high-molecular-weight, ND6-containing precursor

RNAs accumulate, although the mature ND6 mRNA of 1.0–

1.1 kb is not generated. We propose that binding of FASTK is

a rate-limiting step in controlling the abundance of MTND6

because its depletion leads to loss of MTND6 and its overex-

pression results in the stabilization of this mRNA (Figure 4). A

similar process has recently been described in chloroplasts

where certain pentatricopeptide-repeat (PPR) proteins partici-

pate in a ‘‘barrier’’ mechanism in which the protein binds directly

to the 30 end of a mRNA, blocking its degradation by the 30-50

PNPase activity (Barkan and Small, 2014). Although several

PPR proteins have been identified in human mitochondria,

including POLRMT or the PTCD1–3, to our knowledge none of

them play a role in the stability of MTND6. On the other hand,

FASTK is predicted to share a similar global architecture to

PPR proteins, including the repeated a helix motifs (Figure S1B),

and indeed FASTK has previously been referred to as an ‘‘octo-

tricopeptide-repeat’’ (OPR) protein (Eberhard et al., 2011).

Furthermore, it is interesting that a RAP-domain-containing pro-

tein has very recently been identified in chloroplasts ofArabidop-

sis, which, in a manner analogous to FASTK, has been shown to

bind to and regulate the processing of the 12S rRNA (Kleinknecht

et al., 2014). Thus, in widely divergent species, FASTK and

FASTK-related proteins appear to be part of a conserved mech-

anism involved in the biogenesis of organellar RNAs.

Functional Relevance of the Loss of FASTK
The ND6 protein is thought to be a key component of the respi-

ratory chain complex I because a nonsensemutation in this gene

leads to complex I disassembly (Bai and Attardi, 1998). In agree-

ment with these findings, we found an �60% loss of complex I

activity in different tissues from FASTK�/� animals (Figures 3A

and 3B), and this was accompanied by a concomitant decrease

in the level of several nuclear-encoded subunits of complex I

(Figure 3D), also indicating a partial disassembly of the complex.

The decrease in NADH dehydrogenase activity however was not

as strong as we might have expected from the dramatic deple-

tion of ND6 mRNA. This could indicate either that ND6 does

not play the critical role in complex I assembly that had been pre-

viously proposed (Deng et al., 2006) or that low-level residual

ND6 mRNA is able to produce sufficient ND6 protein to permit

some complex I activity (Perales-Clemente et al., 2011). Unfor-

tunately, in the absence of good commercially available anti-

bodies against ND6 (Perales-Clemente et al., 2011), we have
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not been able to distinguish between these possibilities in our

experiments.

In conclusion, we have described a novel component of the

mitochondrial RNA granules, FASTK, which is essential for

MTND6 expression.We propose amodel that predicts that bind-

ing of FASTK to the MTND6 transcript blocks the activity of the

degradosome and participates in delineating its 30 end. Intrigu-
ingly, FASTK is localized in several other types of RNA granules,

including P-bodies and stress granules that appear to play

diverse roles in post-transcriptional regulation of mRNA, in-

cluding mRNA modification and degradation (Anderson and Ke-

dersha, 2009). It is tempting to speculate that similar processes

occur in the mitochondrial RNA granules where FASTK ensures

the regulated expression of the ND6 mRNA.

EXPERIMENTAL PROCEDURES

Cell Culture and Transfection

All cell culture reagents were from GE Healthcare. Cells were cultured in

DMEM supplemented with 10% heat-inactivated fetal bovine serum,

100 u/ml penicillin, 100 mg/ml streptomycin, and 2 mM L-glutamine. When

143B r0 were used, the culture medium was further supplemented with

110 mg/ml pyruvate and 50 mg/ml uridine. Transfections were performed using

calcium phosphate or Fugene (Roche).

Bromouridine Staining, Immunofluorescence, and Microscopy

BrU staining, immunofluorescence, and microscopy were performed as previ-

ously described (Jourdain et al., 2013). Briefly, BrU staining was performed by

incubating cells for 1 hr with 5 mM BrU (Sigma-Aldrich) and immunostaining

with anti-BrU/BrdU (Roche) was performed in PBS containing 0.1% Triton

X-100 and 3%w/v BSA (Sigma-Aldrich). Imaging was performed using a Zeiss

LSM700 confocal microscope. All antibodies used are described in Table S1.

RNA Extraction and Northern Blotting

RNA extraction and northern blot analyses were performed as previously

described (Jourdain et al., 2013). Briefly, total RNA was extracted with Tri Re-

agent (Sigma-Aldrich) and GlycoBlue (Ambion). 5–15 mg RNA were separated

on a denaturing formaldehyde agarose gel and transferred electrophoretically

to a Nylon membrane (GE Healthcare). Strand-specific radiolabelled ribop-

robes (Table S1) were transcribed in vitro using T7 polymerase (Bio-Rad) in

the presence of 32P-UTP, and hybridization was performed at 60�C in 50%

formamide, 7% SDS, 0.2M NaCl, 80 mM sodium phosphate (pH 7.4), and

100 mg/ml salmon sperm DNA. Imaging was done with a phosphorimager

(Bio-Rad).

Mitochondria-Rich Fraction Isolation, Protein Import, Proteinase K

Accessibility Test, and Alkali Treatment

Preparation of cytosolic, nuclear, and mitochondria-rich fractions; protein

import assays; proteinase K accessibility testing; and alkali treatment were

performed as described previously (Jourdain et al., 2013).

Immunoprecipitation, Partial RNase Digestion, and RNA Sequencing

A mitochondria-rich fraction was isolated form 143B cells stably expressing a

C-terminal tagged version of the gene of interest and resuspended in IP buffer

(50 mM Tris/HCl [pH 7.5], 150 mM NaCl, 1 mM MgCl2, 1% NP-40, 3 mM va-

nadylate RNase complex, and 400 u/ml RNAsin Plus [Promega]). Protein-G-

coated Dynabeads (Invitrogen) were washed and incubated in the same buffer

with polyclonal anti-HA (Abcam) or polyclonal anti-FLAG (Sigma-Aldrich).

Beadswere thenwashed, themitochondrial lysatewas added, and themixture

was incubated overnight at 4�C. For partial RNase treatment, beads were

washed twice and incubated for 5min at 37�Cwith 0.2 u/ml of RNase I (Ambion)

in IP buffer without RNase, vanadylate, and RNAsin. After extensive washing,

the tubes were changed and the digested RNAs were 30 dephosphorylated on

beads for 20 min at 37�C using polynucleotide kinase (PNK; Promega) in
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absence of ATP. 50 phosphorylation was achieved by incubating the RNAs

with PNK in presence of ATP for 10 min according to the manufacturer’s in-

structions, before RNA extraction. Quality control, RNA size profiling to ensure

correct RNase I digestion, library preparation, and Illumina MiSeq 1 3 50

sequencing were performed at Fasteris (Plan-les-Ouates). Sequences were

mapped to the human genome (hg38) using Bowtie. The sequences were

aligned to the human mitochondrial genome (NC_012920), visualized and

quantified with IGV (Broad Institute).

Cloning, Viral Production, and RNAi

For protein expression, cDNAs were cloned in pCi (Promega) in frame with a

C-terminal HA-TEV-6HIS tag. Primers are described in Table S1. cDNAs

were then subcloned into pWPT with the following primers: fwd: ATC GAT

CGA CGC GTA CTT AAT ACG ACT CAC TAT AG; rev: CGA TCG ATG TCG

ACA ATG TAT CTT ATC ATG TCT GCT C using MluI and SalI restriction en-

zymes. Lentiviruses for protein expression were produced in 293T HEK by

co-transfecting the constructs of interest cloned into the pWPT vector with

the viral plasmids psPAX2 and pMD2G (Addgene). After 2 days, the superna-

tant was collected, filtered at 0.45 mm, and used to infect 143B cells. shRNA

sequences were supplied precloned in either pLKO.1 (Sigma) or pLKO-TetON

(Addgene; Table S1), and the same protocol of lentivirus production was used.

After infection for >24 hr, cells were selected with 3 mg/ml puromycin (Sigma)

overnight and were analyzed >24 hr after addition of puromycin. pLKO-TetON

is a tetracycline-inducible version of pLKO.1 and was induced with 1 mg/ml of

doxycycline for 3–5 days. pLKO.1 or pLKO-TetON empty vectors were always

included as negative controls.

Mitochondrial Enzymatic Activities and Respiration Rates

Please refer to the Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2015.01.063.
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J.C., Falkenberg, M., Spåhr, H., Larsson, N.G., Lewis, R.J., et al. (2014). A hu-

man mitochondrial poly(A) polymerase mutation reveals the complexities of

post-transcriptional mitochondrial gene expression. Hum. Mol. Genet. 23,

6345–6355.

Wolf, A.R., and Mootha, V.K. (2014). Functional genomic analysis of human

mitochondrial RNA processing. Cell Rep. 7, 918–931.
eports 10, 1110–1121, February 24, 2015 ª2015 The Authors 1121


	A Mitochondria-Specific Isoform of FASTK Is Present In Mitochondrial RNA Granules and Regulates Gene Expression and Function
	Introduction
	Results
	A Cryptic Mitochondrial-Targeting Signal in FASTK
	FASTK Co-localizes with Mitochondrial RNA Granules
	FASTK Is Required for Mitochondrial NADH Dehydrogenase Activity
	FASTK Specifically Regulates ND6 mRNA Levels
	The RAP Domain of FASTK Plays a Central Role in the Regulation of ND6 mRNA
	The Mature ND6 mRNA Contains a 3′ UTR
	FASTK Binds at Multiple Sites within the ND6 mRNA Precursor
	FASTK Modulates Degradosome Activity to Generate the Mature ND6 mRNA

	Discussion
	Regulation of ND6 mRNA Biogenesis by the Mitochondrial Isoform of FASTK
	Functional Relevance of the Loss of FASTK

	Experimental Procedures
	Cell Culture and Transfection
	Bromouridine Staining, Immunofluorescence, and Microscopy
	RNA Extraction and Northern Blotting
	Mitochondria-Rich Fraction Isolation, Protein Import, Proteinase K Accessibility Test, and Alkali Treatment
	Immunoprecipitation, Partial RNase Digestion, and RNA Sequencing
	Cloning, Viral Production, and RNAi
	Mitochondrial Enzymatic Activities and Respiration Rates

	Supplemental Information
	Acknowledgments
	References




